Arrangements of human telomere DNA quadruplex in physiologically relevant K+ solutions
نویسندگان
چکیده
The arrangement of the human telomeric quadruplex in physiologically relevant conditions has not yet been unambiguously determined. Our spectroscopic results suggest that the core quadruplex sequence G(3)(TTAG(3))(3) forms an antiparallel quadruplex of the same basket type in solution containing either K(+) or Na(+) ions. Analogous sequences extended by flanking nucleotides form a mixture of the antiparallel and hybrid (3 + 1) quadruplexes in K(+)-containing solutions. We, however, show that long telomeric DNA behaves in the same way as the basic G(3)(TTAG(3))(3) motif. Both G(3)(TTAG(3))(3) and long telomeric DNA are also able to adopt the (3 + 1) quadruplex structure: Molecular crowding conditions, simulated here by ethanol, induced a slow transition of the K(+)-stabilized quadruplex into the hybrid quadruplex structure and then into a parallel quadruplex arrangement at increased temperatures. Most importantly, we demonstrate that the same transitions can be induced even in aqueous, K(+)-containing solution by increasing the DNA concentration. This is why distinct quadruplex structures were detected for AG(3)(TTAG(3))(3) by X-ray, nuclear magnetic resonance and circular dichrosim spectroscopy: Depending on DNA concentration, the human telomeric DNA can adopt the antiparallel quadruplex, the (3 + 1) structure, or the parallel quadruplex in physiologically relevant concentrations of K(+) ions.
منابع مشابه
Not so crystal clear: the structure of the human telomere G-quadruplex in solution differs from that present in a crystal
The structure of human telomere DNA is of intense interest because of its role in the biology of both cancer and aging. The sequence [5'-AGGG(TTAGGG)3] has been used as a model for telomere DNA in both NMR and X-ray crystallographic studies, the results of which show dramatically different structures. In Na+ solution, NMR revealed an antiparallel G-quadruplex structure that featured both diagon...
متن کاملPolymorphism of human telomeric quadruplex structure controlled by DNA concentration: a Raman study
DNA concentration has been recently suggested to be the reason why different arrangements are revealed for K(+)-stabilized human telomere quadruplexes by experimental methods requiring DNA concentrations differing by orders of magnitude. As Raman spectroscopy can be applied to DNA samples ranging from those accessible by absorption and CD spectroscopies up to extremely concentrated solutions, g...
متن کاملHuman telomeric DNA forms parallel-stranded intramolecular G-quadruplex in K+ solution under molecular crowding condition.
The G-rich strand of human telomeric DNA can fold into a four-stranded structure called G-quadruplex and inhibit telomerase activity that is expressed in 85-90% tumor cells. For this reason, telomere quadruplex is emerging as a potential therapeutic target for cancer. Information on the structure of the quadruplex in the physiological environment is important for structure-based drug design tar...
متن کاملG-quadruplex formation in human telomeric (TTAGGG)4 sequence with complementary strand in close vicinity under molecularly crowded condition
Chromosomes in vertebrates are protected at both ends by telomere DNA composed of tandem (TTAGGG)n repeats. DNA replication produces a blunt-ended leading strand telomere and a lagging strand telomere carrying a single-stranded G-rich overhang at its end. The G-rich strand can form G-quadruplex structure in the presence of K+ or Na+. At present, it is not clear whether quadruplex can form in th...
متن کاملExtreme conformational diversity in human telomeric DNA.
DNA with tandem repeats of guanines folds into G-quadruplexes made of a stack of G-quartets. In vitro, G-quadruplex formation inhibits telomere extension, and POT1 binding to the single-stranded telomeric DNA enhances telomerase activity by disrupting the G-quadruplex structure, highlighting the potential importance of the G-quadruplex structure in regulating telomere length in vivo. We have us...
متن کامل